
TITLE:

}

)

AUTOMATIC PROGRAM GENERATION: FUTURE OF SOFTWARE
ENGINEERING

AUTHOR(S): JOEL H. ROBINSON, E-5

SUBMITi’’EIl TO: Dr. Richard E. Fairley
Computer Science Department

. Colorado State University
Fort Collins, Colorado 80521

,..

A...

BY ticcepumce of this reticle, the publish:r rc- I \
cognizes that the U.S. Government retains a nol~- ~ ~
exclusi~e, royalty-free licenw to publish or repru- i i

duccthe published fonnofthisconttibution, orto; \

allow others to do so, for U.S. Government
I

purposes. i1
The JmsAJamosScientlficLaboratoryrequests thot !
thepublisheridentify thisarticleas workperformed ;
under the auspkes of the Departmentof Energy.

1’

KIIICI .—

.

An Alli Iroo Iiv R Actian/Equul Opportunity fmploy~r

1(!:111 xl. S:(I 1{2
I

- y.

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

AUTONATIC PROGRAII1GENERATION:

FUTURE OF SOFTWARE ENGINEERING

by

Joel H. Robinson

Group E-5, MS-582

Los Alamos Scientific Laboratory

University of California

Los Alamos, New Mexico 87545

Phone: (505)-667-7100 or

(505)-667-3!25

Abstract

At this moment software development is still more of

an art than an engineering disciplirle. Each piece of soft-

ware is lovingly engineered, nurtured, and presented to the

world as a tribute to the writer’s skill. kll~enwill this

change? When will the craftsmanship be removed and the

programs be turned out like so many automobiles from an

assembly line? Sooner or later it will happen, economic

necessities will demand it.

With the advent of che~p mic~computers and ever more

powerful super computers doubling ”capacitywe must produce

much more software. Our choices are to double the number

of programmers, double the efficiency of each programmer,

or find a way to automatically produce the needed software.

Producing software automatically is the only logical choice.

How will automatic programming come about? Some

of the preliminary actions which need to be done and are

being done are: encourage progranmncrplagiarism of existing

software through public library mechanisms; produce well

understood packages such as compilers automatically; develop

languages capable of producing software as output; and

learn enough about the whole process of programnirlYto be

able to automate it. Clearly, the emphasis must not be on

efficiency or size since ever larger and faster hardware is

coming.

●

I. INTRODUCTION

In the future, we will speak to computers and they will perform

the tasks commanded and answer us. They will be able to tell us of

problems they detect andwe will tell them what

computers will be able to handle a wide variety

us with massive data resources. Microcomputers

action to take. Super

of questions, providing

will be everywhere

doing the same things, only slower and on a lesser scale. When they

do not understand a command, they will ask for further clarification

and instruction.

The science fiction in the above paragraph is not in the audio

interface; that has been done. Nor is the fiction in the hardware

interfacing to many different peripheral devices; that has been done.

The fiction is not in computer speed or size; both will continue to

increase while decreasing ~n cost. The~ience fiction is in the software.

No super computer runs without programs, and no means of automatically

generating computer programs of a diverse nature exists today. It is

likely that none is about to appear.

Coi~puterhardware capability is increasing faster than computer

software capability. The gigantic strides in hardware development that

have come and are certain to continue

strides in software. Exactly how bad

solutions arc explored ,n this papei-.

to come are not being met by giant

this problem is and some of the

II. HON BALIIS THE PROBLEM?

Software used to only be about 10% of the cost of computing. It

is now roughly more thanequal the cost of hardware and projections for

the middle 1980s could put software at900%. past that smart, manufac- -

turers could give away the super computers and charge for the rights to

write software! Microcomputers are already in the situation of being

far less valuable than the software which runs on them. When will this

change? How will programs be mass produced at low cost?

. . New generations of super computers seem to be appearing at less

than a decade apart. Great improvements within generations appear every

few years. Micro and minicomputers are evolving faster than that.

Conversely, the software looks similar from generation tc generation.k.&
Reliable software for a super computer takes a long time to develo~

i“tis expensive, somewhat debugged, and usually late. Micro and mini-

computers share the same problem to a lesser extent. When will this

problem disappear? How can software for new computers be available at

the same time as the hardware?

These Scourges of computing must be faced squarely and

defeated. For cGmputing power to advance to the science fiction dreams

of today, the methods of producing software must change.

III. TtltART OF PROGRAMMING

Unfortunately, many people, particularly programmers, still

feel that programming should be an artistic expression. While it

can be performed that way, efficiency of production suffers. Trying

to squeak the last machine cycle out a compute~ whether super computer

or microcomputer, is not usually cost justifier!today. Hardware ef-

ficiency can lead you to the position of a team of efficiency experts

reviewing a concert and reporting:

“For considerable periods the four oboe players had nothing to

do. Their numbers should be reduced, and the work spread more

evenly over the whole of the concert, thus eliminating peaks

of activity. ... All the twelve first violins were playing
~:-

identical notes. This seems unnecessary multiplication. The

staff of this section should be drastically cut; if a large

volume of sound is required, it could be obtained by means of

electronic amplifiers. ... There seems to be too much repetition

of

v10

wh

some musical passages. Scores should be drastically pruned.

useful purpose is served by repeating on the horns a passage

ch !Idb already been handled by the strings. It is estimated

that if all redundant passages were eliminated the whole concert

tine of two hours could be reduced to twenty minutes, and there

would be no need for an interval.”l

T—!lranscomb, pp XVIII-XIX

-3-

IV. CURRENT SOLUTIONS

Won’t today’s methods of programming suffice to evolve into

automatic programming? The typical approach to solving a programming

crisis is to put more programmers and/or better programmers on the task.

While these approaches do have a fair success history, they are limited

by human effort. Obviously not everyone has the interest or aptitude to

program using today’s methods and languages. There is a large segment of

the world population that is unwilling to sit at a desk or CRTfor8 hours

a day talking to a computer. It is also obvious that programmer productivity

can not keep pace with hardware improvements. In “fact,not much hds changed

at all since the development of the last generation’s “automatic programming

tool,’1compilers! With all the laudable increases in programmer productivity

. from the new methodologies, the increases are not enough. There are current

reports of programmer productivity for-~ebugged code of 40 lines ~er day

(Linger and Mills) with other averages being higher or lower. Human

ability will soon set a ceiling on programmer productivity using today’s

nonautomated tools. After that the process must be automated in part or

in pieces to achieve the needed software. I’/hi1e

the number of prograrrunersin the U.S., that doub”

care of the next doubling of hardware capability i

The developed countries of the world cannot i

it is possible to double

ing would only take

and software demands.

afford to continually

remove so many people from other occupations. Economic demands wil”isoon

force automation in programming.

-4-

(

v. STEPS TO AUTOMATION

The road to complete automatic program generatir- ‘-V never be

taken. There is, however, enough demand for at least “ogressto

lay out how the course should be started.

One of the first steps that is going to have to occur is standardi-”

zation of software languages. Without it, progress made in one dialect

or one obscure language is of very little help to anyone else. There are

hundreds of distinguishable dialects and languages impeding programming

progress. As was quoted earlier, “NCIuseful purpose is served by repeating

on the horns a passage which has already been handled by the strings.
,,2

Note the U. S. Government has a hard time making sure that all the dif-

ferent COBOL’S around work the same. The painful but profitable steps of
&

eliminating dialects and consolidating languages is of paramount importance

to eve thinking about automatic program generation. There is a definite

historical precedent that we should heed:

“Then the Lord came down to see the city and

tower which mortal men had built, and he said,

‘Here they are, one people with a single lan-

guage, and now they have started to do this;

henceforward nothing they have a mind to do

will be bsyond their reach. Come let us go

down there and confuse their speech, so they

will not understand what they say to one

another:’ So the Lord dispersed them from

there all over the earth and

building the city.” GEN.

If we want to accomplish progress, we

they left off

11:5-9

must not hinder ourselves

with many langu~ges.

_——
2 Branscomb, IBID.

Once computer professionals are speaking the same languages regard-

less of machine type, then they can begin to share :oftware tools. The

idea of patenting software so that no one else may advance using your

work is detrimental to the industry. Certainly copyrigkltswill not inter-

fere with progress if used to protect proprietary information, because

one can still use a written idea without infringing the c~pyright. Soft-

ware protection needs to be worked out carefully in companies that make a

living selling software, but it can be done. All technological progress

since the invention of the wheel has been based on not reinventing it

each time you want to use one!

Once the computer industry has agreed to the premise that languages

should be standardized and/or limited, the question arises as tc how to do

it. There will probably always be a neeti-or an assembly levei ltiriguage

dialect for each CPU. Hopefully the assembly statements and philosophy would

resemble one another, but asking CPU designers to comply to a standard way

of doing things e~ch generation is probably asking too nuch. Look at how

long it took to get car bumpers the s~me height! Yet, as both super

computers and microcomputers grow faster and larger, it does seem we

afford to “waste a few cycles” and have machines look alike. By the

manufacturer’s selling a standardized assembly language interface to

Could

a

standardized high level language, they also eliminate the need for each

installation having a “resident expert” in assembly language hardware interfacing.

-5-

CAMAC, a hardware standardization system, is fairly successful

in reducing interface problems with hardware. We need a similar system for

the software industry to run everything from super computers to microcomputers.

The remainder of programming effort would be constrained to a few high level

languages that are standardized, having no dialects. Language subsets vihich

do not, in any way, conflict with the standard might be an acceptable de-

viation for those install~itionswhich would find the full language overhead

too great a burden. Do we know enough to settle on languages now? No,

we probably do not know enough ~bout the programing practice to settle on

any standardized languages. To prematurely select a “bad” languag~ could

work to slow our learning about good software; yet we still realize on a

working day-to-day consciousness that something must be done. For example,

new programming studeiltsusually learn BA~~C or FORTRAN in college. This

seem~ like unnecessary repetition. There is no logical reason whymost

languages cannot be both interpretive and compiled. There are current needs

for both types. One could be given the choice of compiler or interpreter,

but leave the language statements alone! If this were done, programs

developed interactively with the interpretive system could be compiled

and run repeatedly under the other system. With standardized languages,

programmers would not have to learn as many languages, or convert programs

with each CPU change. The employer could use “trainees and lower grade

3
operatives more extensively”. The profession would bmefit in much the

same way that physicians benefit from using nurses and nurses from using

orderlies. The alre,adylong training processes would be shortened, freeing

3--mm-

-7- -

time fcr productive occupations. These are just some of the many side

benefits of standardization of computer languages. Work done on automatic

program generation could bring many benefits to the computer industry even

if the full automation is never accomplished.

Standardization of operatir.gsystems is another area of enormous

potential progress towards aUtOMdtiC program generdtic)n. It could also

have both immediate beneficial and profitable side effects.

Everyone recognizes that today we do not have any one operating system

good enough for all applications and all sized computers. Much more work

will need to be done in studying the similarities of today’s successful

operating systems. Once these areas are known, the development of new

systems can be standardized. We must be very careful not to “freeze”

a standard before we know what.we’re doing, because new and better ideas

would have a harder time proving their worth. All I can safely s~y is

that progress must be made and soon. It is wasteful for super computer

designers to race feverishly bringing out a product that will not be fully

utiiized for some years or months. For example, GRAY will begin running

this summer, under a practical operating systenat Los Alamos Scientific

Laboratory. The first hardware was deli\’eredover two years before.

The FORTRAN compiler for the system is still somewhat unreliable.4

Until operating systems can become portable, that is, it takes less effort

to change them, than to rewrite them, new super computers and microcoinputers

will have to wait for full utilization. “Toclay’snew super computer must

~ Johnson, June 23, 1978

-13-

be at least four times faster than the current standa’+din order to

justify the immense effort of conversion, particularly the changes with

the new operating system.“5 It would be iery advantageous to be able to

take smaller steps in progress if only we could afford it. Then, new

ideas could be tried.one at a time.

Automatic progranuningmay be brought a step closer to reality by

using softwa;”etools such as pre-compilers. Pre-compilers are programs

that allow expansions of a language,converting the input to a language

output. Expanding a language by pre-compilers m~y seem like the snme

folly as introducing a new dialect or new langtiage,but it is not. Rather,

it is a way of hiding dialect idiosyncrasies in a commonly understood

language. FORIRAN, for instance, has many dialects, yet still lacks the

“IF THEN ELSE” structure. Ifwe were wil~~ng to give up using our favorite

idiosyncrasies to have commonality and p~rtability by programing in an

accepted pre-compiler language, then we would be able to forget our dialect

compilers. Scftware progi-essedgreatly upon the invention and use of

such tools. It is now time to develop and use these next layer of tools.

I’leshould avoid the self-fulfilling prophecy of the short life span of

software. Mhen software is designed to he easier to rewrite than

the lifespan shr”

avoiding dialect

pre-compiler, we

nks dramatically.

advantages and use

will have designed

take advantage of dialects, not the

When we provide for modificat

either a standard language or

modify,

on by

standard

in longevity. Let the pre-compiler

programmer.

-9-

Pre-compilers also provide an easy mechanism for testing the

usefulness of new programing lariguagestructures. Within the last

decade, many of these have been invented, but almost no languages have

been retrofitted with the new conveniences. If all code were routinely
.

passed through a pre-compiler, several benefits would accrue irrunediately:

first, the old programs cou~d still be recompiled with no changes in the

course of regular maintenance; second, the new features could be in-

troduced in the course of maintenance, eliminating the needfor rewriting;

third, personnel would become accustomed to new ideas gradually - “Trying

to Implement all of the new structured methodologies at once will generally
1

,,6.be a disaster, , fourth, it will gear the using organization up to prepare

for the inevit~ble changes of converting to one of the new and better

languages. ,...
A.

After pre-compilers, the next ‘levelof development is to develop

automatic specification generation. Some work is being done in this area

and several examples will be examined. when a progr~mner needs to write

code, a specification must be laid out. This is,usually done mentally, ‘

accounting for the lack of concrete research. These processes occur within

different minds in different ways, and until something is well understood,

it cannot be autumated. The clerical functions must be separated from the

decision making of what step to take next. T6en we can develop a tool to

do the clerical work.

6 Yourdon, p 263

-1o-

II ...specification mus’. be separated from

implementation, the separation between these

two processes should be a formal operational

abstract (i.e., very high level) program rather

than a nonoperational requirements specifi-

cation. Structured programming represents

the first results of combining these ideas.

It is a sr:cial case of a more general two-

phase process, called Abstract Programming,

in which an informal and imprecise speci-

fication is transformed into a formal

at~stractop~’~tional program, which is.then

transformed into a concrete (i.e., detailed

low-level) program by optimization. Abstract

Programing thu consists of a specification

phase and an implementation (optimization)

phase which share a fcrmal abstract operational

program as their common interface.7

Once it is impossible to both generate precise program specifications

from informal specification and generate a program from the rnsult’ag speci-

fications, the testing, maintenance, and fine tuning of the program can be

done on the specification level, not the computer language level. Large

computers of the future will be ideally suited for implementation of this

methodology by casting off the r[:straintsof size and speed. The turn-

around time will not be from one program change to another, but from one

program specification change to another.

7 Wile and Blazer:p 705

-11-

VI. EXAMPLES OF WORK BEING DONE

Automatic generation of certain accounting programs has already

been researched by the University of Pennsylvania [PRYWES). The user

is assumed to be only proficient in the field of applications and able “

to resolve ambiguities, not in computer languages. The user composes -

statements in a domain specific langllage. These statements stand alone

in containing a “chunk” of information. Statements either describe

data or data relations. The language processor requests information

or changes as necessary to resolve incompleteness, ambiguities, and

inconsistencies. The processor then describes what is the function

of the program and generates input for a.standard high-level language

optimizing the compiler. The user cannot specify the order of evaluation
.,

or memory assignments. Thus the user need-not be familiar with flow-

charting. Statements are independent. Modification of statements can

thus be done one at a time. Statements may be entered by a group

as the statement infer Iation occurs to them. Also, by providing

documentation, the processor is able to provide a collection of “programs”

and provide the user i.tha hard copy for reflection and modification.

A prototype automatic program coder for generating business data

processing syst~m is being developed at MIT (RUTH). They are taking

the approach of automating steps one at a time with the product of each

state being a descriptive representation appropriate for the next stage

of development. In this way, each sof’~waretool of aut.oinationmay be

used as it is developed. This prototype is designed to handle a restricted

yet significant subset of data processing applications. Mork has con-

centrate’, not on transforming the natural language specification into

-12-

abstract program specification, but.~i~implementing and optimizing a

progrnm given the abstract specification. This part has been implemented

and is considered operational.

Los Alamos Scientific Laboratory

generator based on the MODCOMP computer

SUNIER, NELSON).

provides a great

and are familiar

UD a series of

these calls is

and executed.

It is not intended to

has developed a program code . .

system called PROGR~M Z (POORE,

be used by non-programmers, yet

deal of support for those who know some software (FORTRAN)

with the experiment. In Z, the experimenter can build

FORTRAN calls to a rnacroprocessor. In real time, each of

read, the appropriate macro found, brought into memory,

Results of the macros are stored in memory allocated by
.

the user. Thus, the user must enter commands in the right order, and

have a memory allocation scheme. The system does not correct statements

before run ;ime so debugging must occur at run time, Z “programs” may also

be executed in batch with up to four users at once. This Systeci saves the

programmers a lot of effort since end users do their own “coding”.

Whenever machine resources are chea:er than prcgi-mmer’iezources,

all efforts should be made to eliminate the interface of programmer and

user. By eliminating programmers entirely from normal operating modes,

this systelngives the users only what they ask for, with immediate

answers as wpll. While there is still a pseudo programming language to be

learned, it is similar to

We will see a lot more of

Once experience is gained

FORl”ltANand directly related to the tasks at hand.

these “domain specific” languages in the future.

in providing automatic program generation In small

-13-

domains of work, we will be in a position to expand the domain. The

ultimate domain of all that humans are capable of questioning is of

course not necessary even if it were possible.

Los Alamos has also developed a compile-type general-purpose

data acquisition system, “Q” (KELLOGG, MINOR, SHLAER, SPENCER, THOHAS,

VAN DER B.EKEN.The user must be familiar with computers and computer
.

languages in this case, P!)P-11and FORTRAN, respectively. It is useful

in a variety of experimental needs for managing data acquisition and

display during an experiment. Users describe events and events drive

the system. Possible commands include a data taking module, an RSX-IID

handler for data recording and distribution, control and computational

analysis modules, and histogram entry, retrieval and plotting modules.

The need was to allow physicists to desig~ code, debug, and run their

programs - giving them all the tools they would possibly need. Users

are allowed to write FORTRAN subroutines for their own purposes and are

encouraged to be independent of the staff programmers.

In both the Q and Z systems, Los Alamos had to satisfy the tremen-

dous demand for software generated by putting minicomputers onto an

experiment. In the future, this will become increasingly common, not

just in experimental laboratories, but in m~nufacturing, warehouses, and

educational facilities. It has been proven nlanytimes thnt once people

are shown what computers can do, they will produce a strong demand for

using them.

-14-

Sperry

generation to

accessible to

Research Center has also done work on automatic program

discover techniques that will make computers more directly

nonprogrammers (BLACK). Their

il...Dialogue Processor is a universal

facility which has many potential uses;

essentially it can front-end any parameter or

transaction driven system. It is currently

being used as an interactive program speci-

fication technique in conjunction with an

application customizer. Among

sible applications are its use

to formulating complex command

statements (e.g. JCL)’and as a

language interface for data bases.,,8

other pos-

as an aid

language

query

By having a dialog driven system, learning is reduced or eliminated,-

user responses can be minimal and validated immediately, question sequence

can change dynamically, and the user can save or review previous sessions.

By using an “automated consultant” even complex sets of specifications

can be generated - especially using forms. Clearl,y,these types of

specification generator, —...------
CCU~?Cd R;tYI G’ti~Giiiti~fC ptuyi alll Cwti&i”iS, Ut’ii

paving the way for automatic program generation.

—-.— .-—..—
8 ~’liiCk3 p 397

-15

CONCLUSION

In this paper I have presented some of the methods that will be

needed to make science fiction a reality. The hardware of tomorrow will

be cheaper, faster, better, and more efficient. Human resources are

not going to be able to keep up with the demand generated by t$e new

super computers to super micros if we persist in using these same tired

methods. Some of the new methods will be based on increased prograrmner

efficiency. New

methodologies wi’

iu have to learn

methodologies are

1 not be enough.

to share software

being invented all the time, but new

Programmers and institutions are going

and software ideas. Public libraries

must be set up to provide a forum for new knowledge. New computer

languages are going to have to be invented which can request information

to resolve ambiguities, which resemble sp=kiny tongues, and which are

easier to use. Domain specific automatic program generators will soon

be cropping up everywhere to save on valuable programmer resources.

Once enough experience is gained in these areas, we will see even complicated

prog’-a.flsuch as operating systems being generated easily and transported

from CPU to CPU easily. Once we have gained the understanding of pro-

gramming enough to thoroughly automate it, programming can once again

afford to become an art.

-l(i-

1.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

L. H. Baker, LASL personal conversation, June 23, 1978.

R. Balzer, “Whither Automatic Progranuning,”AFIPS National Computer

Conference Proceedings (1978).

J. Black, “A General Purpose Dialogue Processor,” AFIPS National

Computer Conference Proceedings (1978).

L. M. Branscomb, “The Everest of Software,” Computer Software Engineering

Polytechnic Press (1976).

T. Fay, “Subroutine Libraries,” Mini-Micro Systems, May 1978, pp. 65-68.

M. Hamner, “The Impact of Automatic Programming Research,” AFIPS National

Computer Conference (1978).

R. T. Johnson, LASL personal conversation, June 23, 1978.

M. Kellogg; M. Minor, S. Shlaer, N. Spencer, R. Thomas, M; Van der Beken,

“QUALand the Analyzer.Task,” LosAlamos Scientific Laboratory, October 1977.

S. Krakowiak, M. Lucas, J. MontuelleuJ. Mossiere, “A Modular Approach

to the Sturctured Design of Operating Systems,” Computer Software Engineering,

Polytechnic Press (1976).

10. R. C. Linger, & H.

Programs,” Current

Hall, Inc. (1977).

D. Mills,

Trends in

“On The Development of Large Reliable

Programming Methodology, Vol. I, Prentice-

11. W. A. Martin and M. Bosyj, “Requirements Derivation in Automatic

Programming,” Computer Software Engineering, Polytechnic Press (19?6).

12. P. J. Plauger and B. W. Kernighan, “Software TooIs,” Adclison-lleslw (1976)0

13. R. Poore, J. Sunier, R. Nelson, “Program Z Data Acquisition and Analysis

System,” LASL, December 1977.

14. N. PrJ’wes, “Automatic Generation of Computer Programs,” AFIPS National

Computer Conference Proceedings (1977).

REFERENCES CONTINUED

15. G. Ruth, “Protosystem I - an .~utomaticProgramming System Prototype,”

AFIPS, National Computer Conference Proceedings (1978).

16. T. A. Standish, “The Future of Automatic Progranxning,”AFIPS National

Computer Conference Proceedings (1978).

17. D. Wile and R. Balyer, “Transformational Implementation,” AFJPS

National Computer Conference Proceedings (1978).

18. E. Yourdon, “The Choice :f New Software Development Methodologies>”

AFIPS National Computer Confwence Proceedings (1977).

